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ABSTRACT

The paper gives conditions on a family of matrices which

guarantee that some matrix in the family will have a multiple

eigenvalue. In particular, the main theorem states exactly which

dimensions admit k dimensional subspaces of matrices for which

all nonzero elements have distinct eigenvalues.

This question arises naturally in the theory of first order

hyperbolic systems of partial differential equations, the main

theorem, in this context, tells exactly for which integers n an

n x n systes in k space variables may be strictly hyperbolic.
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SIGNIFICANCE AND EXPLANATION

Hyperbolic systems of partial differential equations are

those for which the Cauchy problem is well posed.

Strictly hyperbolic systems are a subclass for which: 1)

solvability of the Cauchy problem is stable under perturbation

2) singularities propagate along curves 3) the condition of

hyperbolicity can be verified, (i.e. to check if a system is

strictly hyperbolic one need only verify an algebraic condition).

In this paper, it is shown that for first order n x n

systems in more than two space variables, strict hyperbolicity

can be obtained only for special dimensions n. For example,

with 3 space variables there exist strictly hyperbolic n x n

systems if and only if n - 0, + 1 modulo f.

The paper also includes many related results which are more

algebraic in nature.
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ON THE CW~SSING RLU

S. Friedland* I , J.W. Robbin**, and J.H. Sylvester"

1. Introduction.

The classical theorem of Wigner-Von Neumann (1927] shows that the

real symmetric matrices (resp. hermitian matrices) with a multiple eigenvalue for

a real algebraic variety of codimension 2 (resp. 3) in the space of all

real symmetric matrices (resp. all hermitian matrices) . This implies

the famous "non-crossing" rule which asserts that a "generic" one-

parameter family of real symmetric matrices (or two-parameter family of

Hermitian matrices) contains no matrix with a multiple eigenvalue. Our

aim here is to give conditions on a family of matrices which force a

"crossing" of the eigenvalues; i. e. assure that the family contains a

member with a multiple eigenvalue. Our main result is:

There is a (k+l)-dimensional vector space of (n X n) real matrices

such that each non- zero matrix has no multiple eigenvalue if and only if

k < a (n) where a(n) is the function defined below.

For n = 2 (mod 4) we have that a(n) = 2; hence any

3-dimensional vector space of symmetric (n X n) matrices contains a

non-zero matrix with a multiple elgenvalue. This result is due to

Lax [19 81]..

The problem arises naturally in the theory of symmetric first-order

hyperbolic systems with constant coefficients (see John [1977] ); our

theorem says exactly which dimensions admit examples of such systems

having only simple characteristics.

* Hebrw University - Jerusalem, University of Wisconsin-Milwaukee.

**DXrtment of Mathemrtics, University of Wisconsin-Madison.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
2 This material is based uton work survorted by the National Science
Foundation under Grant N6. MCS-7927062, Mod. 1.



Our theorem uses the work of Adams (1962] and is thus imtimately

connected with the problem of vector fields on spheres. Thus in §2 we

formulate a kind of non-linear Radon-Hurwitz-Adams theory and show how

it follows easily from the work of Adams. In §3 we state and prove various

forms of our main theorem. In §4 we consider the complex case and also

the real case where the eigenvalues are allowed to be complex. Finally

in §5 we remark that in the Hermitian case, the "middle eigenvalue" must

1 cross if the dimensions are right

The reader should note the general topological nature of the results.

Namely all five theorems A, B, C, D, E below prove that there is a

(k+l) -dimensional vector space of matrices having some property if and only

-:2 if there is an odd continuous map from the k-sphere into the matrices with

this property.

I.

Io.

I
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,.. § 2. Families of invertible matrices.

de Denote by Mm(R) the vector space of all real m by m matrioes

and by GL (m, R) the open subset of invertible matrices. For A e Mm(R)

let A: e Mm(R) denote the transpose of A and let I c Mm(R)denote the identity matrix. For a Rk+l j aj denotes the usual

Euclidean norm, Sk denotes the k-sphere aj = 1, and RPk

denotes the real projective k-space obtained from Sk by identifying

antipodal points.

Let p (m) denote the Radon-Hurwitz number:

p (m) = 2 c +8d

for:

m = ( 2 a +) 2c +4
d

where a, c, d are integers and c = 0, 1, 2, 3.

THEOREM A: For integers m ' 0 and k a: 0 the following are

equivalent:

(Al) k < p (m);

(A2) A -AtheeexistA1, .o Mm(R) with:

AiAi =

A, A + AA 0
J I

for i, j 1 1, .-,, k with i J;
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(A3) .there is. a linear map:

R Rk+l I R

such that:

l(a)xl = lal jxI

for a e Rk+l and x e Rm;

(A4) there is a linear map:

Sk+l M (R)

such that:

o(Rk+l\O) C GL(m,R);

A 5) there is an odd continuous mag_:

: Sk -- > GL(m,R);

(A6) the Whitney sum of m copies of the canonical line bundle on RP k

is stably trivial: i.e. there exist continuous maps:

: --- > Rn i = I,*"., n

such that x x(a), .. , (a) form a basis for Rn for each a E Sk

4! and:

xi(-a)= -xi(a) i = 1,...,m

xi(-a) = xi(a) i = m+l, .'', n

(AT) this Whitney sum is trivial; i.e. (A6) holds with m =n;

(A8) there are k pointwise linearly independent vectorfields on the

(m-l)-sphere Sm-l
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Proof: All of this is either well-known or easily obtained from well-known

results. To orient the reader we discuss the proof but all we need for

theorem B are the implications (A6) =- (Al) =q (A3).

The proof of (Al) 4t! (A2) 4 (A3) is due to Radon [1922] and

Hurwitz [1923]. We note (as they did)that (AZ) =P (A3) is quite easy

namely:

D(a) = a 01 + EaiAi

satisfies (A3) if the A satisfy (AZ) while:

Ai= O(eO)*,(e i )

k+l(with eo, ... , ek  an orthonormal basis for Rk ) satisfy (A2)

if 0 satisfies (A3). The point here is that (A2) says that the Ai

afford a representation of the Clifford Algebra on k generators (though

apparently Radon and Hurwitz did not know about Clifford [ 1876] ). These

algebras are semisimple and hence (by Wedderburn theory) the simple ones

are matrix algebras over the reals, complexes, or quaternions and each

representation is a multiple of the standard representation. In fact, the

Clifford algebras are easily classified and the classification yields the

numbers p (M). For a nice exposition see Porteous [ 1969]

The implication (A2) ==> (A8) Is trivial; the vectorfields:

S - ~ :1
sml ->Tdn l  x --> Aix

are pointwise orthonormal. The converse implication Is of course the

title theorem of Adams [1962] .
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Of the remaining implications, the following are obvious:

- (AS) < (A) (Let xl(a), ,Xmla) be the columns of cp (a));

' (A7) (A6) (Let m = n);

(A3) =p (A4) == (AS) (Let q = OISk)

We shall prove (A6) == (A) and (using the main theorem of Adams

* [1962] ) (AS) ::' (Al)

Proof of (A6) (An). Assume (A6. We first show that k < m.

The easiest method is via Steifel-Whitney classes (see e. g. Husemoller

kk
L~i: [ 1966 ] for an exposition. ) Let J - RP k  denote the canonical

real line bundle and R -- RPk  the trivial line bundle. The hypothesis

(A6) says that the n-plane bundle

E = JO *** JOE j* (DR(D G

m n-m

is trivial. Hence:

m
=w() =w() M

But

w(j)= 1+ Co

where e E H (ItP k ,Z 2 ) is such that k 0. It follows immediately

that k < m . Now (A6) (A7) follows immediately from the

following well known*

,I
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PROPOSITION. Let F -- P be an m-plane bundle over a k-dimensional

manifold. Assume that F is stably trivial and k < m. Then F is

trivial.

For proof see e.g. Husemoller (1962] page 100; it can also be

proved using Sard' s theorem as follows. We assume that for a C P we

have:

Fa @span(xm+l(a),'exn (a)) = Rn

where F is an m-dmenslonal subspace of Rn and x: P- Rn

are pointwise independent vector valued functions. We must find a

continuous map:

Q P - GL(n)

such that:

Q(a)F _ 0m x 0 nC

By induction we assume n = m + 1, and by Welerstrass approximation

we assume that F is smooth i. e. that:a

Fa = ( (a)"

where : P - m is smooth. Since dim (P) = k < m Sard's

theorem yields a constant vector:

e E Sm\(q(P) U -e(P)).

We define an orthogonal transformation Q(a) : Rn -- Rn by:



Q(a) span (e,~ (a))'= identity;

Q (a) span( e, (ja)) span e, ()

This characterizes Q(a) uniquely if we demand that Q(a) should be

a rotation through angle less than -,T on the plane span (e, e(a))
Clearly Q is continuous and:

Q(a)F eL
a

4 as required.

Proof of (A5) =4(Al). We shall reduce this to the following

theorem (1.2) of Adams [1962]:

THEOREM Tf there is a continusa:

f : EPm /RPm~ - Sm

such that the composite:

Sm L RPm+k /RPm~ !.Sm

has degree one, then, k < p(in) . Here X/Y denotes the space

obtained from X by smashing the subset Y to a point so that there is

a natural Identification:

S m = IRPM1 IPM-1

and I denotes the inclusion:

I : RPi/RPil RP ~/m l

Given q'P Sk _ GL(m) as in (AM) we must define f as in

the theorem of Adamns. For x e R m and a e Rk+l with a 0 let:
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: r( ,x)= Cll,(p€(,/lc.l x).

As:

'7(XCy, Xx) = X r(.x)

for X E R, X 1 0 the map induces a map:

f • Rpm+k\RPm 1 RPM\Rpm - I

Bctend f to a map:

f. Rm+k Rpmm

by mapping the point H RPm ' l of Rpm +k/RPm4  into the point

rn-1RP of Rpm/Rpm - . It is left to show that f is continuous

at H. Indeed for [a,x] 6 pm+k we may assume that Ia12 +jxj =1
while from the continuity of p and the compactness of Sk  we have

Ss> 0 with

jxl S l p(a)xl

for all a C Sk and x e Rm . This gives:

a1-1Jaj 5 1P(a/la)x

so that '( a, x) approaches H C RPm as (a, x) approaches

0 X S Thus f is continuous at H as required. For fixed

a C Sk  the map x - f (a, x) is linear invertible and hence of degree

+1 . (If the negative sign occurs, compose with a reflection.) This

completes the proof.
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§3. Families of matrices with simple eigenvalues.

We now state and prove our main theorem.

THEOREM B: For positive integers n and k the following are

equivalent:

(B1) k < a(n) where a(n) is given by:

a(n) = 2 for njO, ±1 mod 8,

a (n) = p(4b) for n= 8b, 8b ±1;

(B2). either k = 1 or else there is an integer m with k < p(m) and

n isone of 2m-l, 2m, 2m+l;

(B3)_ ere is a __le map:
itk +1
RT • -Mn(R)

such that each matrix T ( a) (a e Rk+l\O) has n distinct real

eigenvalues;

CB4__there exists an odd continuous map:

S' Sk _M R)

k

such that each 4( a) (a C S has n distinct real eigenvalues

Proof: The pattern of proof is (Bl) <=-- (B2) and (B2) = (B3) . (B4)

,-4 (B2).

(BI) => (B21. Assume k< a(n). If kA 1 we must have k < p(4b)

where n is one of 8b-l, 8b, 8b+1. Take m = 4b.



(B2)= (Bl). Let n= 8b+c where -3 sc S4 and suppose

also that n =2m-l1, 2m, or 2m + 1 As p (4b) > 1 there is nothing

to prove if k = I. Hence suppose l<k< p(m). Then m=0 mod4

*so n =-1,0,1 mod 8 whence m 4b so a(n)=p (m) >k as

required .

(B2) =JV(B3) . First assume that k = 1 . Let A eMn(R) bea

diagonal matrix with) distinct eigenvalues say:

2

* An=

and Bn C M n(R) be the tridiagonal matrix which is zero on the diagonal

and one on super and subdiagonal:

0 1
1 0 1

Bn=.1 0

1 0

Take

Yn (a) ao 0An +lB 

Now T n(a) is symmetric and by expanding by minors in the last row:

Pn(') -X -4a)
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where:

P() = det n()

Thus if a1 A 0 the polynomials P (X) are pairwise orthogonal in

a suitable measure (see e. g, Freund [1960] page 60 ) and hence have

simple roots (Freund [1960] page 17); if a= 0 but a 0 j 0

this is obvious. Hence in either case the eigenvalues of yn(a) are

distinct so that n• R2 - Mn(R) satisfies (B3).

Now assume k < p(m) and n= Zm-1, Zm, or 2m+l.

By theorem A choose 0 :k+l -- Mm(R) so that

(a* a• 0(a)€(-)* = j@ jzI

for a c Rk +' and define r Rk+lmIM~ m(R) by:
,:~I -- M~m()

r(a) = (a)(a

where Im e Mm(R) is the identity. One easily verifies that for

I al =1 we have:

r(a)r(a)* = ?2m

so that if D C M2 m (R) is a constant matrix with distinct eigenvalues
1' " "'22m then:

X 1 0 2 tenT(a) = r (a) Dr (a)*

has distinct eigenvalues 2 Xl, - 2 '2m . Now (a) is a polynomial

of degree -S2 in a; the trick is to choose D so that the zeroth

order and second order terms drop leaving T (a) linear In a * This is

4

F ~ .1
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accomplished by choosing:

D= [A 01
-A

so that:

) 0 A(a)*]

Note that the eigenvalues of y(a) are ±Zaj li i m where

VI Y2> > Y im > 0 are theeigenvaluesof A.

The map y clearly satisfies (B3) when n = 2m In case

n=2m+l themap

y~(a)= [~(a) 0)

obtained from y by adding a zero row and column also satisfies (B3).

To handle the case n = 2m - 1 let T (a) be defined as above but

let A haveeigenvalues Y , v. > " v 0..

Then.... (a) has vm = 0 as a double eigenvalue with eigenspace

spanned by the m-th and 2m-th columns of F (a) (assuming A =

diag( v1' • )m) ) The difference of these two columns is a constant

vector (i.e. independent of a) which spans a one-dimensional

subspace invariant by each 0 (a). As y (a) is symmetric the

orthogonal complement E 2 m - of this vector is also invariant by

each T (a) and so:

T.(a) = (a) E2 m -l



gives the required map T : Rk +1 M 2m_(R) satisfying (M)

(B 3) (B 4). Take T IS

(B4) -r (BZ). If k = 1 there is nothing to prove hence assume k > 1*

Let x l(a) > •. > A- (a) be the eigenvalues and choose corresponding

unit eigenvectors vl(a) , • vn(a):

J4' (a)vi(a) = ki (a)vi(a) (i = 1 .. , n)

The vectors vi(a) are defined up to a sign and hence (since Sk is

simply connected) may be taken to be continuous. Since '(-a) =

we have that

xi(l-a) = - n ! l a

for I= 1,...,n and hence that:

(.1 vi(-.} = ±vn.i+I (a)

where the choice of ± is independent of a (by continuity). Changing

the signs of some of the vi if necessary we may assume:

vi(-a) = vni+I (a)

for i = 1, 2, •-, [n/2] but in case n is odd either sign may occur

4 in (*) for the middle eigenvalue (i = n-i+l). Take m = n/2 if n

is even, m = i-I if n is odd and the sign in (*) is + 'when i© n-i+l

and m = i if n is odd and the sign is -. Let:

xi(a) = vi(a) - Vn-i+i(a) i =

xi(a) = vi(a) + vn_i+l(a) i = [n/2] +1,-n;

Xi(a) = vi(a) I = n-L+1.

4

- Then 1

I
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X,(-a) = -x1 (a) 1 lee, M

* and

x (-a) = x1(a) I = m+l, -, n

so the Whitney sum of m copies of the canonical bundle over EPk is

stably trivial. Hence by (A6) (Al) we have k < p (m) as

required.

The following example illustrates the difference between the cases

k = and k> 1. Let t :S 1 -- Mz (R) be givenby:

Cos a sin a
(a) Lsin a -cos a]

so

44 (alv(13) =P vi-A)

for

FCos ~
vIP)

Thus the etgenvectors are given by v () with 1 = Cz/2, (a& + w )/2

and are not well-defined on S1 . This cannot happen for Sk  with

k' 1.
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S4. The complex case.

Now let F be one of the fields R (reals), CC (complexes),

or M! (quatemnions); M m ()be the real vector space of mn by in

matrices with entries from F; A* denote the conjugate transpose of

Ae M M() and GL(m, F) =the invertible matrices in M M(F) . Let

H n(F) = {B C M n(F) : B = B } denote the Hermitian matrices .
*Define the Radon- Hurwitz -Adam s- Lax- Phillips numbers p (m, F) by

table I for m =1, 2,4, 8 and for general m. by the conditions:

P ((Za +l)m, F) =P (m, F);

p (16m, T) p p(m.IF) + 8 .

We have the following generalization of theorem A:

THEOREM C For Integers m>70 and k i 0 the f ollowing are

equivalent:

(Cl) k p (m, F);

(C2) there exist A,..-,AkC Mm ih

A, A*= 0

AA =-Ii
A1A +AJAi 0

for i j 1~,..m.

(M3) there is a linear map:

:Rk+l M M
Im
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satisfying,:

(D (a)a) l al I;

(C4) there is a linear map:

0 : --kl Mm(F)m
satisflng:

o (Rk\O) C GL(m, F)

(C5) there is an odd continuous map:

9 : sk-GL(mIF);

(C6) there are continuous maps:

x, S k . 1 n (=1,...,n)

such that x, (a),., xn(a) form a basis for Fn as a vector space

over F and:

xt(-a) = -xt(a) 1 1, ...1 m

xi(-a) = xi(a) i = m +1, ... ,n;

(C7) (C6) holds with m = n.

Zq....
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TABLE 1

1 12 4p2 2 4 5
4 46 6

6 8a 8

4 TABLE 2

k (IF) 31 c

2 O.H() 4 21

3, VHj3 4 21

44(C

HSOR

m.(n
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Proof: (C2) (C3) - (C4) (C5) and (C5)c41 (C6)< (C7) are

exactly as before. (In (C6) ==> (C7) note that the Steifel-Whitney

class argument gives k < m dimR (F) .) The main theorem of Adams-Lax-

Phillips (1965) is (Cl)4z (C4); the same argument (using (AI =l (AS)

Instead of (A)4 (A4)) shows (Cl)<'*o (C5).

We discuss (Cl) =. (C2). The first two columns of table 2 list some

Clifford algebras (i. e. spaces Mm satisfying (C2)) for k = 0, .... ,7.

Using the Inclusions:

Mm(R) C Mm() C Mm(II)o

Mm(GI) C M 2 (R)

MI(H) C Mzm()

we easily deduce the last three columns of table 2: an m In the column

labeled F and the row labeled k means that there is a Clifford algebra

on k generators in Mmin Now p (m, F) as defined in table 1 is

one greater than the largest value of k for which m appears under F

in table 2; this proves (Cl) = (C2) In case m = 1, 2, 4, 8. The

general case follows from the following fact: if Mm( F) is a Clifford

algebra on k generators and b Is any positive Integer then:

Mb(F) = Mm(F) 0 M(R)

is a Clifford algebra on k generators and:

M16m(F) = M m(F) ® M16 (R)

is a Clifford algebra on k + 8 generators. (This Is the "periodicity

theorem"; see Porteous [19691 page 249 . Table 2 appears there

on page 250.) This proves (Cl) = (C2).

_ _._,_.- ._. '._' " • ". . J.. . . .. . . .. .... . .. .. .i . .
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We next give a complex version of theorem B and, at the same time,

a real version of theorem B which allows for complex eigenvalues.

THEOREMA D *Let ni and k be positive integers arnd F = R, CC.

In case F =R assume k >2* (Thecase k=2 and F=R

Is considered in Theorem E !ALt d = dimRF M = 1 or 2). Then

* the following are equivalent:

(DO) k < a(n,IF) where:

u(nF) =d+l for n 0,±l mod8

=p(4b,F) for n 8b, 8b ± I;

(D2) either k :Sd or there exists m with k < p (m, F) and

n 2m -l, 2m, or 2m +1;

(D3) there is a linear map:

such that each matrix T (a) (a 0) has ni distinct (necessarily

real) eigenvalues;

4 (D4) there Is an odd continuous map:

S M

rsuch that each (00 has ni distinct (possibly complex) eigenvalues.
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Proof: The implications (DI) -- (DZ) =4 (D3) =i (D4) are essentially

as before; in case k= Z and F= G we can take:

'n(a) = 0 An + alB n + a2 Cn

where:

o 1

-i 0 i

C = -1 0

0 1

-i 0

(We remark that this works for the case P = H as well Take d = 4

and let a 2  be a pure quatemion in the definition of T

We now prove (D4) p (DI) in case F = o If k s2 there

is nothing to prove, hence assume k' 2. Let Xl(a),..., \n (a) (I

be the eigenvalues of T (a). Since r (-a) = -y (a) we have:

{kl(a )... kn-a) = -kla),.. 0-Xn(a)}

as sets; we claim that after a suitable re-indexing we have:

k(-a) =-Xn-i+l(cf)

as in Theorem B. Indeed, if this re-indexing is not possible we must have:

Xi(-a) =-i(a)

for more than one value of I But then the map:

S 3k - R2

given by:

(a) = xi (a)" -j (

is an odd map which is (by (D4)) nowhere vanishing; this contradicts the

Borsuk-Ulam theorem (Spanier [1966], pages 104 and 266).
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Now the eigenspaces:

an

are complex line bundles of S k and hence (as k > 2) trivial. This

follows from:

I1k 1(GL(l,( ) =r Wkl(S 1) = 0

and the homotopy characterization of bundles over a sphere (see Husemoller

[196 2] , page 86 corollary 8. 4). Hence the bundles Ei have nowhere

zero sections vi(a) and as:

Ei I E n-i+l
-a a

we may take:

()vn-iil(-) =vi(a)

for i 1, 2,...[n/2] (and hence for i, n - i+1). In case n

is odd the middle eigenvector v = v I (I= n - i + 1) satisfies:

-vi(-a) = g(a)v1 (a)

for some continuous map g : Sk -. S Clearly g satisfies the condition

4 that g (a) g(-a) =1.* As before we take:

xi(a) = vi(am) - vn-i+l(cl) i=

xi(a) =vi(a) +vni+,(a), [n/2] +l, n;

4xi() =h (a) v(a), in- I+lI

where h: 5k- s1 Is so chosen that:

xi(- a) =±+x1(a

for I = n-i+ 1.* We can then choose m (as In Theorem B) so that
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I

xi(-a) - -xi(a) , I - ,..., m

x (-a) = xi(a) i= m+l,...,n

The existence of h follows from the following:

LEMMA. A continuous map g : Sk S1  has the form:

g(a) = ±h(a)h(-a) I

for some continuous map h : Sk -- S1  if and only if it satisfies:

g(a)g (-O) = 1.

Proof of Lemma: "Only i0' is immediate and by induction on k "if" Is

easy for k > 2: define h on the equator by the induction hypothesis,

extend to the northern hemisphere by wkl(S) = 0 and extend to the

southern hemisphere by h (-a) = +h (a) g (a) - 1 . This argument works also

for k = 2 provided that the restriction of h to S (given by the induction

hypothesis) extends to the disk . Hence consider the case k = 1 . Take

h to be a square root of g:

2
h (a) = g (a)

so that:

h(-a) "- = g(-a)-= g(a)

whence:

{h(alh(-a) } = g(a)

as required. To see that h Is single valued note that:

h(e i(O+r))2 -= h(-e10 )2 = g(-eiG) = g(e ie)1 = h(ee )-

so that:

h(e(e+e)) = +h(e 0 )-

j - whence:
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h (ei( +Z)=h (ei e )

as required. To see that h extends to the disk note that:

2deg(h) = deg(gjs) = 0.

This proves the lemma.

We have now verified (C6) . As (C6) =4 (Cl) we have proved

Theorem D In case F = (C

We now consider the case F = R and k > 2 Since

Mn(R) C M n () the conclusions of the complex case are available to us;

moreover, if Y(a) is an eigenvalue so is i (a) . If X (a) is real

for some a i. e. is real for all a; otherwise at the transition we

would have a real eigenvalue of multiplicity two. If n is odd, the middle

eigenvalue (i = n- i+l, ki (-a) = -)I (a)) must be rac , else there

would be two. Thus after a suitable reindexing we have three cases for

each index i Is n

(1) "i=i

(2) = Xn-i+ 1

(3) "i= jJ n-i+1

where in case (3) we may assume that J :z n/2. if I :s n/2.

In cases (1) and (3) It is obvious that we can choose the eigenvectors

4 so as to satisfy (#) above and:

(f#) i= vj if i = X
i if

we show below that this is possible in case (2) as well. Assuming this

" we may define for ,j l, ... ,[n/2]:

6
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x, V n-i+1° ~~if" = 1
X ni+ 1 =v i + Vni+1
x: = Im(vi) if

x i n-i+i
Xni+I - Re (vi)

x Re (v, - Vni+)

xjm(vi - Vni+i) if kip I < .

Xn=i+1  Re(v, + Vnj+1)

Xn-j+ 1 = Im (vi + vn-J+I)

and in case n isoddand i= n-i+l:

xi Vi •

Thus x,, * are real and span Rn  and satisfy:

x(-a) = -x 1(a) . = o... m

V- M x(a) m + 1,..., n

where m is either [n/2] or [n/2] +1. Then (as in Theorem B)

we have proved (A6) and are done.

We prove that in case (2) we may satisfy (#) and (*). Let w,

be any (normalized) section of E and define Wn4.l+ by:

wn-i+l(-O)= wi(a)•
. En -i+1

Now Wn-l+ 1  and are both sections of E SO:

Wi gWn-i4-l

kI 1
where g: Sk -S 1  Is continuous. It follows that g is even . We

seek h: Sk -S 1  continuous so that if:

vI = hwi
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and vn-1 +I  is defined by (I1, then (##1 obtains. This follows

immediately from the following:

LEMMA: A continuous map g: Sk -- S1  has the form:

g(a) = h(a)hl-a)

for some continuous h: Sk -S if and only if g is even .

Proof: As in the last lemma take h to be a square root of g; we get:

g(a) = + h(a) h (-a).

If the minus sign occurs replace h by ih . As before h is well-defined.

We remark that it seems quite difficult to prove an analog of (D4) = (DI)

in case F =E1, even (especially) in case the eigenvalues are real

(unless one adopts the position that the real eigenvalues of a quaternionic

matrix are always multiple). The reason is that wk-I (S3) 0 for infinitely

many k so that the eigenspacequaternions line bundles over Sk need not

be trivial.

W nnw turn to tia looqma and left by Theorem D: the case k = 2 and

F=R.

THEOREM E.. For each integer n z 2 the following are equivalent:

(El) nJ2 mod 4;

V- (E2) there is a linear maR:
R~3

y : -.- Mn(E )

such that each T(a) (ar 0) has n distinct (possibly complex)

eienvalues;
4-'



(E3) there is an odd continuous map:

2
S:S M n (R)

such that each T (c) (a £ S2) has n distinct fpossibly complex)

eigenvalues.

Proof (El) = (E2). For a e R3  the complex matrix:

a~) (' 0  il +ia2

anU() a 2
1 a2 "0 /

is Hermitian and has trace zero . Hence its eigenvalues are + k (a) where

k(a) > 0 for a j 0 'The matrix (l+i)U(a) has eigenvalues

+(lI+i) X (a). View this matrix as a 4 by 4 real matrix using the Inclusion

M2 (G ) C M4 (R). It has four distinct eigenvalues + (I+i) )(a) and

+(1-i) ( (a) Hence:

T 4b(a) = diag((l + I ) U(a) , 2 (1 + i)U (a), .. ,b (1 + i)U(a))

has 4b distinct eigenvalues + J (I + i) X (a) (J = 1..., b) and satisfies

(E2) for n= 4b. For n =4b+1 add a zero row and column:

T4b+l = 'y4b® 0 I

where T (a) = 0 f M(R). For n = 4b + 3 take the direct sum with

the cross product:

T 4b+3 Y4b Y3

where:

y 3 (a)v * ax v
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i3
For a, v R Note that the non-zero eagenvalues of y3 (a) are pure

imaginary and thus distinct from the eigenvalues of Y4b(a).

(E) = (E3). Take ?yj8

(E3) = (El). Assume n u 2 mod 4 but that * satisfies (E3). By

Theorem A some eigenvalue )Ya) must vanish for some value of a; in

particular X, (a) must be real for some a. But as in Theorem D, Xi (a)

is real for some a if and only If It is real for all a Hence (as the

complex elgenvalues occur in conjugate pairs) there must be 2m > 0 real

eigenvaluep:

Il ( a ) : la) . k2mla)

But now:

y (a) ()- 1 (mof) + km+.1a))i

is an odd map into GL (n,F) contradicting Theorem A.

4

I

FI-
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S5. Which Elgenvalues Cross ?

Theorem C has a Hermitian version as well. Let PH( n , F)

(F R, C,H) be given by:

SPH(n, R) = p(j) +1;
,I pH(no 6) -- p(n,@ C I

S= p(-1 ) + 5

where we take p(r) 0 If r in not an integer.

THEOREM F Let n> 0 and k > 0 be integers and F. R, 3 .

Then the following are equivalent:

(F) k< PH(n, F).

(FZ) there is a linear map.

* : Rk~1 -.. Hn(F)

with:

I *(k+l\0) C GL(n IF);

(F3) there in an odd continuous map:

sk- GL(n,F) Hn(F) •

(The equivalence (Fl)<=> (F2) is proved in Adams-Lax-Phillips (1965);

the same reasoning shows (Fl)<> (P3).) This has an easy implication

for the crossing problem:

COROLLARY. Let n Zm , IF R,0 , or II . Then there is an

odd continuous map:

k: Hn(F)

with:
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Xm(a) > km+,(a)

for all a C Sk  (where X 1 (a). > .n (a) are the eigenvalues of

y(a)) if and only if k < p(n, F).

Proof: "only if" is exactly as in Theorem E for "if" let 4P = q be

any odd map into GL (n, F) flHn(F)* Then the integer p defined by:

i: )"~a)• " •p (a•~ p~la) >... >•kn (a )

is independent of a since no Xi( a) vanishes. But Xi (-a) =

- X ni+(a) so we must have p = m.

We conclude with the following remark . Theorem B implies

(for k a p (n)) the existence of a multiple eigenvalue but does not give

any information about which eigenvalue is multiple; the above corollary

implies that the "middle" eigenvolue is multiple. This is not accidental.

Indeed in Friedland-Loewy (1976) it was shown that any n(resp. 2n-1)

dimensional subspace of Hn(R) (resp. Hn((C)) contains a non-zero

matrix with a non-simple first eigenvalue and this result is sharp (I. e. can

fail for subspaces of lower dimension). This suggests that the "higher the

eigenvalue" the "rarer the crossing".

, ..
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